

Towards Intelligent E-Mobility

International Conference on Electric and Intelligent Vehicles

NANJING, CHINA JUNE 25-28, 2021

CONTENTS

- WELCOME TO ICEIV 2021
- ACKNOWLEDGEMENT
- COMMITTEES
- **KEYNOTE SPEAKERS**
- PRACTICAL GUIDE
- SPEAKER GUIDE
- PROGRAM AT A GLANCE
- ORAL PRESENTATIONS
- POSTER PRESENTATIONS

WELCOME TO ICEIV 2021

ICEIV

In order to build cleaner, more efficient and more intelligent carriers, carrier industries worldwide are developing technologies in the directions of fuel decarburization, energy diversification, power electrification and intelligentialization. As such, research and development of vehicle and the integration of power system, control system and energy storage technology have also attracted enormous attention. The International Conference on Electric and Intelligent Vehicles (shorted as ICEIV2021) will provide an excellent forum for scientists, researchers, engineers and government officials all over the world to present and discuss around the latest key carrier technologies and development trends. The previous three ICEIV conferences were respectively held in Stockholm, Sweden, Melbourne, Australia and Stavanger, Norway, in 2017, 2018, and 2019, with more than 200 participants at each conference.

The conference can accept submissions in Chinese and English. Topics of interest include, but are not limited to Vehicle Technology, Battery System Technology and Propulsion System Technology

- (1) Carrier and vehicle technology
- (2) Battery and energy storage Technology
- (3) Power and drive system technology

Conference Chair: Prof. Fengchun Sun Prof. Rui Xiong

ICEIV

ORGANIZERS

SUPPORTING JOURNALS

ICEIV

Conference Chairs

Prof. Fengchun Sun	Beijing Institute of Technology/Academic	ian of	the
	Chinese Academy of Engineering, China		
Prof. Rui Xiong	Beijing Institute of Technology, China		

Program Committee

Program Chair

Hongwen He	Beijing Institute of Technology, China
Kai Jiang	Huazhong University of Science and Technology, China

Program Committee Member

Peng Bai	Yonggang Liu	Weixiang Shen	Kai Wang
Changjun Xie	Weijiang Xue	Xiaoguang Yang	Junwei Zha
Xi Zhang	Xuan Zhou	Chengming Zhang	

Organizing Committees

Organizing Chair

Jonghoon Kim	Chungnam National University, South Korea
Chun Wang	Sichuan University of Science and Engineering, China

Organizing Committee Member

Xin Dai	Bin Duan	Siming Peng	Yong Tian
Qingsong Wang	Yujie Wang	Tiezhou Wu	Xiaogang Wu
Jun Xu	Ruixin Yang	Caiping Zhang	

COMMITTEES

Scientific Advisory Committee

Advisory Committee Chair

Ju Li	Massachusetts Institute of Technology, USA
Hailong Li	Mälardalens högskola, Sweden

Advisory Committee Member

Lounis Adouane	João L. Afonso	Pouria Ahmadi	Seungyoung Ahn
Giuseppe Aiello	Mauro Feliziani	Peter Gaspar	Ivan Arsie
Enrico Gerding	FrancisF. Assadian	Pavol Bauer	Malek Ghanes
Anouar Belahcen	Francesco Bellotti	Riccardo Berta	Stefano Bracco
Olivier Briat	Francisco P. Brito	Steve Burrow	Aldo Canova
Ahmad Hably	Sekyung Han	Willett Kempton	Namwook Kim

Conference Secretary

Secretary-General

Yu Sun	China Electrotechnical Society, China		
Under-Secretary-	General		
Aihua Tang	Chongqing University of Technology, China		
Quanqing Yu	Harbin Institute of Technology, Weihai, China		
Publishing Committee			

Chair

Jing Su	MDPI, China
Tong Zhang	Journal of Mechanical Engineering, China

KEYNOTE SPEAKER 1

ICEIV

Title: Green Aviation and Electric Propulsion: Present and Future

Professor Li Liyi engaged in the research of special motors and special electromagnetic devices. Facing the needs of chip manufacturing industry, the linear motor with high precision and high dynamic characteristics in the stage system of lithography machine is studied. In order to meet the

Prof. Liyi Li

requirements of high reliability attitude control of special aircraft, a high overload and high power motor system is developed. The series of high speed spindle motor system has been developed and widely used. In 2012, he was funded by the national fund for Distinguished Young Scholars, and was awarded the title of Yangtze River scholar in 2013, and served in seven academic committees in China. He won the second prize for national technological invention and 6 provincial and ministerial awards. He published more than 300 academic papers, 160 of which have been indexed by SCI. More than 80 patents have been authorized, 3 of which have won silver award of invention exposition, and 10 have realized technology application transformation in enterprises.

Today, aviation industry plays an increasingly important role in serving human production and life, promoting economic development and social progress. However, aircraft noise, particulate matter emissions and carbon dioxide greenhouse gas effect also bring serious pollution to the world. At present, the aviation industry emits more than 900 million tons of carbon dioxide every year, and it is estimated that the emissions will more than triple by 2050. Green aviation technology has become the main driving force leading the change, and low-carbon has become the inevitable requirement and trend of future aviation. This report focuses on high efficiency aviation electric propulsion technology, introduces the current development status of Green Aviation and electric propulsion technology, and prospects the development trend of key technologies of green powered aircraft.

ICEIV

Title: Superconducting Materials and their Applications

Prof. Ma is the head of the Department of New Superconducting and Energy Materials in IEECAS. He has an outstanding expertise in the field of superconducting wires and tapes, and has published more than 300 papers in SCI ranked journals so far. He is the editorial-board member of journals such as Supercond. Sci. Technol., Physica C and Sci.

Rep.. He has been invited to give 62 plenary or invited presentations in international academic conferences such as ASC, EUCAS, ISS, Vortex and ICMC. Since the discovery of iron-based superconductors (IBS) in 2008, his group was the first to fabricate the iron-based superconducting wires by using the powder-in-tube method. Since then, he has been contributing innovative ideas (and publications) in improving transport critical current density Jc of IBS wires. Due to the original and pioneer work, Prof. Ma was invited to write the first review article on IBS wires for Supercond. Sci. Technol. in 2012. In recent years, he has made many significant contributions in high-performance IBS wires and their practical development, including the first high-performance multifilamentary wire in 2013, realizing the practical level Jc of 10⁵ A/ cm² at 4.2 K and 10 T in 2014, the first 100-meter class wire in 2016 and the first iron-based superconducting pancake coil in 2019. These advances represent significant breakthrough work in the development of iron-based superconductor technology, and strongly promoted the applications of iron-based superconductors. The contributions of Prof. Ma are highly regarded in superconductor research community. In 2019, the European Society for Applied Superconductivity (ESAS) announced that the 2019 ESAS Award for Excellence in Applied Superconductivity is awarded to Prof. Ma for his "outstanding contributions to the development of superconductive wires with potentially very high impact for applications".

KEYNOTE SPEAKER 3

ICEIV

Prof. Hong Li

Title: Intrinsic safe lithium ion batteries for EV and stationary energy storage

Hong Li got the degree of bachelor degree in Lanzhou university in 1992, master-degree in Institute of Changchun Applied Chemistry, CAS in 1995 and Ph.D degree in Institute of Physics, CAS in 1999. He is currently a full professor in

Institute of Physics, Chinese Academy of Sciences. His research interest is high energy density lithium ion batteries, solid lithium batteries and failure analysis. He has published over 400 papers in peer-reviewed journals with over 30000 times citation and the H-factor is 91. He has filed over 190 patents and 60 have been granted. He is the regional editor of Solid State Ionics and Ionics. He serves as the scientific committee member of MOST and MIIT in China, IMLB and ICESI in the world. He has initiated the Tianmu-lake Institute of Advanced Energy Storage, Yangtze River Delta Physics Research Center, Beijing WeLion New Energy Tech. Ltd., Tianmu Excellent Anode Materials Tech. Ltd, HiNa Battery Tech. Ltd, .

ICEIV

Title : New Battery Chemistries and Materials Issues

Ju Li has held faculty positions at the Ohio State University, the University of Pennsylvania, and is presently a chaired professor at MIT. His group (http://Li.mit.edu) investigates the mechanical, electrochemical and transport behaviors of materials as well as novel means of energy storage

Prof. Ju Li

and conversion. Ju is a recipient of the 2005. Presidential Early Career Award for Scientists and Engineers, the 2006 Materials Research Society Outstanding Young Investigator Award, and the TR35 award from Technological Review. Ju was elected Fellow of the American Physical Society in 2014 and a Fellow of the Materials Research Society in 2017.

Hybrid anion- and cation-redox (HACR) cathodes that combine the redox capacities of transition-metal cations and oxygen/sulfur anions [1] provide new opportunities for rechargeable batteries. High-voltage electrolytes and coatings [2] reduce the stress-corrosion cracking (SCC) of electrodes and the depletion of liquid electrolytes, to prolong the cycle life. New developments in Lithium-metal batteries with mixed ionic-electronic conductor (MIEC) porous interlayers and ion-electron insulator (IEI) binders will be discussed [3]. Finally, the challenges with "renewable wastes" will be introduced, and microwave based treatments will be discussed [4].

[1] "Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment," Nature Energy 4 (2019) 1049; Nature Energy 4 (2019) 374.

[2] "Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte," Nature Energy 6 (2021) 495; Nature Energy 6 (2021) 362.

[3] "Li metal deposition and stripping in a solid-state battery via Coble creep," Nature 578 (2020) 251. "Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries," Energy Material Advances (2021) 1519569.

[4] "Self-Perpetuating Carbon Foam Microwave Plasma Conversion of Hydrocarbon Wastes into Useful Fuels and Chemicals," Environ. Sci. Technol. 55 (2021) 6239.

PRACTICAL GUIDE

ICEIV

About NANJING

Nanjing, the capital city of Jiangsu Province and the provincial political, economic and cultural center, is located in the lower reaches of Yangtze River, southwest of the province.

Nanjing's advantageous geographical position and long history culture make Nanjing rich tourism resources. Nanjing was the ancient capital of the six dynasties in Chinese history, a city of ten dynasties; also it is the famous historical and cultural city and tourist city. Various types of tourism resources can be found here, including mountain, water, city and forest.

Nanjing is recognized as the museum of modern Chinese history.

Venue Information

Nanjing Air-Hub International Expo Center is located in Lishui District, Nanjing. It is a multi-dimensional transportation center integrating the airport, high-speed railway, expressway and shipping. It is easily accessible using any means of transportation, only 8km form Lukou International Airport and next to the S7 light rail station, to reach the venue.

Aviation

Nanjing Lukou International Airport is only 8 km away from Nanjing Air-Hub International Expo Center, 35 km away from the city and 45-minute drive to the city. The airport has opened nearly 120 routes to 42 domestic cities and 19 international and two regional cities. It has regularly direct passenger route including Nanjing to Hong Kong, Macau, Singapore, Seoul in Korea, Osaka in Japan, Bangkok in Thailand, Frankfurt in Germany and other cities. Also, it has regularly virtual international routes to Los Angeles, London, Moscow, Vancouver changing flights from Beijing. It also has occasional chartered airplane from Nanjing to Kuala Lumpur, Phuket, Sabah, etc.

PRACTICAL GUIDE

Railway

Nanjing has four passenger station including Nanjing Railway Station, Nanjing West Railway Station, Nanjing South Railway Station and Nanjing North Railway Station (Pukou Train Station). Also, it has one marshalling yard Nanjing East Railway Station. At present, Nanjing South Railway Station, 30 km away from Nanjing Air-Hub International Expo Center, mainly operates the high-speed rail Beijing-Shanghai Express Railway, Shanghai-Wuhan-Chengdu High-speed Railway, Nanjing-Hangzhou High-speed Railway, Nanjing-Anqing High-speed Railway, etc. which has become important traffic portal in Nanjing and one of the major transportation hubs in east China.

Taxi

The starting price of the taxi in Nanjing is 10 yuan/3 km and additional 2.4 yuan (daytime) or 3.2 yuan (night) per kilometer beyond 3 km, adding with 1 yuan for fuel surcharges. There is no charge for the waiting time.

Subway

The first subway in Nanjing was officially opened on September 3, 2005 By the end of 2019, Nanjing subway consisted of 10 lines and had a 378-kilometer subway line; in 2030, Nanjing will have 17 subway lines which constitute a total network of 655 km of rail transit network in Nanjing. The tickets fare of Nanjing subway is from 2 yuan to 11 yuan. Nanjing Air-Hub International Expo Center is next to the S7 light rail station.

SPEAKER GUIDE

PRESENTATION VENUES

The following table lists the presentation venues which are used in the detailed program.

Event	Location	
Opening of ICEIV	A3-M4ABC	
Inauguration Ceremony of Energy Storage System and	A3-M4ABC	
Equipment Technical Committee		
Session A	A4-M5A	
Session B	A4-M5B	
Session C	A4-M5C	
Session D	A4-O23	
China Electrotechnical Society Youth Technical Forum	A4-M5B	
The appointment ceremony of IEEE Power & Energy		
Society Electric Vehicle Satellite Committee-China	A4-M5B	
Battery System Subcommittee		

PROGRAM AT A GLANCE

Registration:

June 25:14:00-17:00; June 26:9:00-12:00, 14:00-17:00; June 27: 9:00-12:00

Friday June 25:

14:00-17:00The opening ceremony of ICEIVLocation A3-M4ABC18:30-20:00Inauguration Ceremony of EnergyStorage System and
Location A3-M4ABCEquipment Technical CommitteeLocation A3-M4ABC

Saturday June 26

- 09:00-12:10 The opening ceremony of EVS 34
- 12:10-13:00 Lunch
- 13:00-14:20 Dialogue Session
- 14:30-17:40 Lecture Session Location A4-M5A and A4-M5C
- China Electrotechnical Society Youth Technical Forum

Location A4-M5B

Sunday June 27

09:00-12:10	Lecture Session	Location A4-M5A, A4-M5B and A4-M5C
	The appointment	ceremony of IEEE Power & Energy Society
10:40-12:10	Electric Vehicle	Satellite Committee-China Battery System

- Subcommittee Location A4-M5B
- 12:10-13:00 Lunch
- 13:00-14:20 Dialogue Session
- 14:30-17:40 Lecture Session Location A4-M5A, A4-M5B and A4-M5C

Monday June 28

09:00-12:10 The closing ceremony of EVS 34

PROGRAM AT A GLANCE

Time	Day 1 June 25					
14.00 17.00	The opening ceremony of ICEIV2021 (A3-M4ABC)					
14.00-17.00	Chai	Chairs: Prof. Hongwen He & Prof. Kai Jiang				
14:00-14:30		Welcome Te	o ICEIV2021			
14:20 15:00		Keynote Speake	ers1: Prof. Liyi Li			
14.30-13.00	Title: Green Avi	ation and Electri	c Propulsion: Pres	sent and Future		
15.00 15.20	к	eynote Speakers	2: Prof. Yanwei M	а		
15.00-15.50	Title: Supe	rconducting Mat	erials and their A	pplications		
15:30-16:00	TEA/C	OFFEE BREAK &	TOOK A GROUP P	НОТО		
		Keynote Speake	rs3: Prof. Hong Li			
16:00-16:30	Title: Intrinsic	safe lithium ion	batteries for EV a	ind stationary		
	energy storage					
16.20 17.00	Keynote Speakers4: Prof. Ju Li					
Title: New Battery Chemistries and Materials Issue			als Issues			
17:00-18:30	DINNER					
18.20 20.00	Inaugurati	on Ceremony of	Energy Storage S	ystem and		
18.30-20.00	Equipment Technical Committee (A3-M4ABC)			4ABC)		
Time	Day 2 June 26					
09:00-12:10	The opening ceremony of EVS 34					
Afternoon	A4-M5A	A4-M5B	A4-M5C			
14:30-16:00	VSC	Youth	SES			
Afternoon	A4-M5A	Technical	A4-M5C			
16:10-17:40	DOS	Forum	BDC			

Time	Day 3 June 27				
Morning	A4-M5A	A4-M5B	A4-M5C		
09:00-10:30	BMM I	BMM II	BMS I		
Morning	A4-M5A	A4-M5B	A4-M5C	A4-023	
10:40-12:10	BMS II	PES ceremony	BMS III	BAMM I	
Afternoon	A4-M5A	A4-M5B	A4-M5C	A4-023	
14:30-16:00	MOC	EM	BTM	BAMM II	
Afternoon	A4-M5A	A4-M5B		A4-023	
16:10-17:40	VOS	PMS		BAMM III	
18:30	BANQUET				
Time	Day 4 June 28				
09:00-12:10		The closing cere	mony of EVS 34		

ICEIV

VSC=Vehicle safety and control

SES=Smart energy system

DOS=Diagnosis and optimization system

BDC=Battery design and control

BMM=Battery modeling and management

BMS=Battery management system

MOC=Motor optimization control

EM=Energy management

BTM=Battery thermal management

VOS=Vehicular optimization system

PMS=Power management system

BAMM=Battery management and maintenance

China Electrotechnical Society Youth Technical Forum

1st — Low temperature heating technology of power batteries						
Time: 13:30-17:30, Jun 26 2021 Venue: Room A4-M5					4-M5B	
	Opening Ceremony					
Chai	r: Chengming Z	hang, Associate	professo	or of Harbin Institute of Tech	nology	
	Zhuo Yan	Vice executive	secreta S	ry of China Electrotechnical Society	welcome speech	
13:30-13:40	Kai Wang	Director of G and Applicatio of El	roup of on, Rese ectrical	Advanced Energy Storage earch professor of Institute Engineering, CAS	Welcome speech	
	Chair: Kai Wan	Overview of I g, Professor of In	ndustr nstitute	y Challenges of Electrical Engineering, CA	S	
13:40-14:00	Qianhui Zha	ng, Vice chief en	ngineer	Beijing Electric Vehi	cle Co., LTD	
		Keyn	ote Lec	ture		
	Chair: Caip	ing Zhang, Profe	ssor of	Beijing Jiaotong University		
14:00-14:25	Zhe Li, Associate professor of Tsinghua University		Advanced Battery Design Methods and Tools and Their Industrial Practices			
14:25-14:50	Xiaosong Hu, Professor of Chongqing University		Research on Low-Temperature Preheating Control and Temperature Adaptive Heating Strategy of Lithium-ion Batteries			
14:50-15:15	Haifeng Dai, Professor of Tongji University		Low Temperature Heating and Electrothermal Cooperative Management of Lithium-ion Batteries for Electric Vehicles			
15:15-15:40	Xi Zhang, Professor of Shanghai Jiaotong University		State Estimation and Thermal Runaway Prediction of Lithium-ion Batteries based on Electrochemical Mechanism			
15:40-16:05	Chao Lyu, Professor of Harbin Institute of Technology		Optimization strategy of thermal management system and AC heating for lithium-ion batteries			
		Technical S	eminar	Interview		
	Chair: Shi	guo Zhou, Seiner	⁻ Engine	er of Yutong Bus Co., LTD	<u> </u>	
	Yongzhi N	lao, Chief engine	er	Risesun Mengguli New En Technology Co.	ergy Science & , LTD	
16:20-17:20	Shiguo Zho	ou, Seiner Engine	eer	Yutong Bus Co.,	, LTD	
	Qianhui Zhan	g, Vice chief eng	gineer	er Beijing Electric Vehicle Co., LTD		
	Zhirun Li	, Seiner Enginee	r	Huawei Technologie	s Co., LTD	
		Forun	n Sumi	mary		
17:20-17:30	Н	ongwen He, Pro	fessor o	of Beijing Institute of Technol	ogy	
* *	*					

	Day 2 June 26				
Room: A4-M	5A				
Lecture Sess	ion: Vehicle	safety and co	ontrol		
Session Chai	r: Zeyu Chen				
		Invite	d Speech		
Time	Paper ID	Author	Title		
			A simplified thermal model for battery		
14:30-14:50	1990158	Zeyu Chen	external short circuit for fault detection		
			applications		
		Oral Pre	esentations		
Time	Paper ID	Author	Title		
		Xiaoguang Guo	Multidisciplinary Optimization on Energy		
14:50-15:04 13251805	13251805		Management and Mechanical System of		
			Hybrid Electric Vehicles		
			Simulation Analysis of Shielding Effectiveness		
15:05-15:19	6150585	Jin Jia	of High Voltage Cable and Connector for the		
			Electric Vehicle		
		Vicovu	Study on Mechanism Analysis and Method of		
15:19-15:33	11551160	Mang	Skidding Prediction for Electric Vehicle based		
		vvalig	on Time-Delay Effect of Force Transmission		
15.22 15.17	6251270	Pongfoi Li	Design and Realization of Auxiliary Power Unit		
15.55-15.47	0251270	rengiei Li	Control System for RE-EV		
			Metal object detection for a wireless charging		
15:47-16:00	2671433	Yong Tian	system based on machine learning and		
			hyperspectral imaging		

		Day	2 June 26
Room: A4-M	5C		
Lecture Sess	ion: Smart E	nergy Systei	m
Session Chai	r: Yong Tian		
		Invit	ed Speech
Time	Paper ID	Author	Title
			GSSA Modeling and H-infinity Control for
14:30-14:50	2670221	Yong Tian	Dynamic Wireless Power Transfer System of
			Electric Vehicles
		Oral Pr	resentations
Time	Paper ID	Author	Title
14:50-15:04 6150587			Research on the Radiated Immunity Test
	Jin Jia	Methods of ADAS Functions in Intelligent	
			Vehicles
		Nan Liu	Trajectory tracking of an autonomous vehicle
15:05-15:19	2200521		using a nonlinear model predictive control
			approach
			Research on Cooperative Eco-driving Control
15:19-15:33	12051033	Bin Huang	Method of Intelligent Connected Vehicle for
			Multi-vehicle Cooperation
			Functional Safety Validation Platform for
15:33-15:47	15:33-15:47 12151529	Bin Wang	Electric Drive System based on X-in-the-loop
			in CATARC
15.47-16.00	6190598	lunvi Tang	Planning of electric vehicle charging facilities in
15:47-16:00 6	Junyi lang	conjunction with traffic and grid requirements	

Day 2 June 26						
Room: A4-M	Room: A4-M5A					
Lecture Sess	ion: Diagnos	is and optim	ization system			
Session Chai	r: Changjun	Xie				
		Invite	d Speech			
Time	Paper ID	Author	Title			
		lichao	Fault Diagnosis of Real-scenario Battery			
16:10-16:30	1270277	Hong	Systems Based on the Modified Entropy			
		попе	Algorithms in Electric Vehicles			
		Oral Pro	esentations			
Time	Paper ID	Author	Title			
		Quanqing	Multi-fault detection of battery sensor based			
16:30-16:44	10350857		on two dimensional convolution neural			
		fu	network			
16.44 16.59	2620225	Chen Yu	Day ahead optimal dispatch of microgrid			
10:44-10:58	3020325		based on taxi trip data in Harbin			
			Multi-thread Sensing Coil Design for Metal			
16:58-17:12	2670463	Yong Tian	Object Detection of Wireless Power Transfer			
			Systems			
17.12 17.26	1000172	Bo Zhang	Fault diagnosis approach for short circuits of			
17.12-17.20	1990172	BU Zhang	lithium-ion batteries in electric vehicles			
		liulong	A Quasi-Z Source Buck-boost DC-DC Converter			
17:26-17:40	5800544	544 Wang	with Wide Step-up/-down Range for Fuel Cell			
			Vehicles			

	Day 2 June 26			
Room: A4-M	15C			
Lecture Sess	ion: Battery	design and c	ontrol	
Session Chai	r: Zhongbao	Wei		
		Invite	d Speech	
Time	Paper ID	Author	Title	
16.10 16.20	12121025	Zhongbao	Moving Horizon-based Current Estimation for	
10:10-10:30	12131825	Wei	Current Sensor-less Smart Lithium-ion Battery	
Oral Presentations				
Time	Paper ID	Author	Title	
16.20 16.44	1600121	Yuting Ma	Research on multi-model probabilistic SoC	
10.50-10.44	1000121		fusion estimation of ultracapacitors	
16.14 16.59	11541507	Xiaoguang	A Thermally Modulated Battery For	
10.44-10.56	11541507	Yang	Mass-Market Electric Vehicles	
			Fault Diagnosis for Proton Exchange	
16:58-17:12	12601219	Weiwei Huo	Membrane Fuel Cell Based on mechanism	
			model	
17.12 17.26	14501925	Xingyu	Layered δ -MnO2 Nanosheets as Cathode for	
1/:12-1/:20	14301835	Zhao	High Performance Aqueous Zinc Ions Battery	
17.26 17.40	10401922	Minghua	High-energy-density Hybrid Supercapacitor	
17:26-17:40	10401822	Chen	Based on Nickel Sulfide Cathode	

		Day 3	June 27
Room: A4-M	5A		
Lecture Sessi	on: Battery i	modeling and	I management I
Session Chair	r: Chaolong Z	Zhang	
		Invited	l Speech
Time	Paper ID	Author	Title
09:00-09:20	2990281	Chaolong Zhang	Battery state-of-health estimate for lithium-ion battery using information entropy and PSO-LSTM
		Oral Pres	sentations
Time	Paper ID	Author	Title
09:20-09:34	11530868	Chenxu Wang	The Open Circuit Voltage Prediction Based on Long Short-Term Memory Recurrent Neural Networks
09:34-09:48	10240827	Kui Zhang	Research on low temperature AC heating system of lithium-ion battery based on wireless charging
09:48-10:02	2941388	Tongxin Shan	Explosion Behaviors Investigation of Large-format Lithium-ion Pouch Cells
10:02-10:16	10220821	Jiahuan Lu	Prediction of battery capacity degradation under varied operating conditions using deep learning
10:16-10:30	10841870	Xiaopeng Tang	Battery State of Charge Estimation Considering the Uncertainties of Battery Ageing

	Day 3 June 27				
Room: A4-M	5B				
Lecture Sessi	on: Battery r	modeling and	I management II		
Session Chair	: Limei Wan	g			
		Invited	l Speech		
Time	Paper ID	Author	Title		
09:00-09:20	2790223	Yongzhi Zhang	An Online Health Diagnosis and Prognosis Method for Lithium-ion Batteries Using Least Squares Algorithm		
	Oral Presentations				
Time	Paper ID	Author	Title		
09:20-09:34	6141666	Shucheng He	A energy management system for second-life battery in renewable energy systems considering battery degradation costs		
09:34-09:48	12821905	Yi Wu	Online Capacity Estimation Based on Semi-Supervised Convolutional Neural Network and Partial Charging Information		
09:48-10:02	9591157	Suzhen Liu	Estimation of LiFePO4 Battery State of Charge Based on the Time Domain Features of Ultrasonic Waves		
10:02-10:16	16202070	Liang Ma	A Multi Head Deep Learning Algorithm for State of Charge Estimation		
10:16-10:30	12131823	Zhongbao Wei	Machine Learning Enabled Multiphysics-Constrained Fast Charging of Lithium-Ion Battery		

		Day 3	lune 27	
Room: A4-M	5C			
Lecture Sessi	on: Battery ı	management	system I	
Session Chair	: Simin Peng	S		
		Invited	Speech	
Time	Paper ID	Author	Title	
09:00-09:20	4870964	Simin Peng	A capacity optimization method based on modified genetic algorithm for the battery energy storage system in power distribution network	
Oral Presentations				
Time	Paper ID	Author	Title	
	09:20-09:34 4610438	Shuai Jiang	Qt-based power battery management	
09:20-09:34			system core algorithm auxiliary	
			development software	
09.34-09.48	9591154	Suzhen Liu	Experimental Study on Lithium-ion Battery	
	5551151		Performance at Different Discharge Rates	
		Wanzhou	Study on the characteristics of lithium-ion	
09:48-10:02	10080843		batteries under repeatedly short-time	
		5411	external short circuit	
		Chaocheng	SOC Estimation for Supercapacitor based on	
10:02-10:16 1631984	1631984	Fang	Adaptive Extended Kalman Filter with	
		Fang	Variable Temperature Model	
10:16-10:30	13321216	Peng Huang	A novel dual-source battery system for pure	
	••••••		electric vehicles	

	Day 3 June 27			
Room: A4-M	5A			
Lecture Sessi	on: Battery	management	system II	
Session Chair	r: Aihua Tang	S		
		Invited	Speech	
Time	Paper ID	Author	Title	
			Multi-model fusion dynamic state-of-charge	
10:40-11:00	1720135	Aihua Tang	estimation of lithium-ion battery in electric	
			vehicles	
Oral Presentations				
Time	Paper ID	Author	Title	
			A variable duty cycle control strategy for	
11:00-11:14	10181012	Yu Tian	heating of all-climate batteries at low	
			temperatures	
			A self-resonated heating circuit for	
11:14-11:28	10131039	Liang Zhang	Lithium-ion battery at low temperature	
			based on LC resonance	
		Dui Viena	Capacity fading Model of Vanadium Redox	
11:28-11:42	5940558	(Student)	Flow Battery Considering Bulk Electrolyte	
		(Student)	Transfer	
11.42 11.56	0520741		A Battery Life Estimation Method for Electric	
11.42-11.50	9550741	21900 21100	Vehicles	
			Battery capacity estimation based on	
11:56-12:10	5040445	Yiran Lin	incremental capacity analysis considering	
		charging current rate		

	Day 3 June 27			
Room: A4-M	5C			
Lecture Sessi	on: Battery	management	system III	
Session Chair	r: Yanan War	ng		
		Invited	Speech	
Time	Paper ID	Author	Title	
			Effects of structure and material parametes	
10:40-11:00	2090177	Yanan Wang	on thermal performance of li-ion battery	
			under fast charging conditions	
		Oral Pres	entations	
Time	Paper ID	Author	Title	
			Battery pack state of health prediction	
11:00-11:14 14201494	14201494	Xiaoyu Li	based on the electric vehicle management	
			platform data	
			Online SOC estimation based on simplified	
11:14-11:28	5380584	Longxing Wu	electrochemical model for lithium-ion	
			batteries considering sensor bias	
			State-of-health estimation for lithium-ion	
11:28-11:42	4301341	Jufeng Yang	batteries based on frequency characteristic	
			analysis of equivalent circuit model	
			A mechanical-electronic coupling model	
11:42-11:56	3411286	Jun Xu	based state of charge estimation method for	
			Lithium-ion pouch battery module	
11.56 12.10	10220942	lintao Huana	An extended equivalent circuit model of	
11:56-12:10	10320842 Jintao		Lithium-ion battery considering surface SOC	

	Day 3 June 27				
Room: A4-O2	23				
Lecture Sessi	on: Battery	management	and maintenance I		
Session Chair	: Quanqing	Yu			
		Invited	Speech		
Time	Paper ID	Author	Title		
			Research on Modeling and Operation		
10:40-11:00	NA	Binyu Xiong	Optimization Strategy of All-vanadium Redox		
			Flow Battery		
Oral Presentations					
Time	Paper ID	Author	Title		
11.00 11.14	4570414	Yanzhou	Efficient Online Equalization Strategy for		
11.00-11.14		Duan	Electric Vehicles Based on State of Charge		
			Battery Fault Diagnosis Based on Abnormal		
11.14 11.20	0771007	Peifeng	Capacity Fading Prediction by Combining		
11.14-11.28	3771007	Huang	Long Short-term Memory Neural Network		
			and Savitzky-Golay Filter		
11.20 11.42	4001050	Oʻzu əlin Chi	Physics-based Fractional-order Model of		
11.20-11.42	4991030	QIONEIIII SIII	Liquid Metal Battery		
			Fuel Cell Degradation based Cost-Optimal		
11:42-11:56	12021602	Weitao Zou	Energy Management for FC-CHP Microgrid:		
			A Game Theoretic Approach		
			Model Predictive Control for Output Current		
11:56-12:10	2670221	Yong Tian	of Electric Vehicle Dynamic Wireless		
			Charging Systems		

	Day 3 June 27				
Room: A4-M	5A				
Lecture Sess	ion: Motor o	ptimization	control		
Session Chai	r: Chengmin	g Zhang			
	Invited Speech				
Time	Paper ID	Author	Title		
14:30-14:50	2130377	Chengming Zhang	Characteristic Analysis of Propulsion Motor with Series/Parallel Switched Windings for Unmanned Aerial Vehicle		
Oral Presentations					
Time	Paper ID	Author	Title		
14:50-15:04	1820167	Xuerong Li	A Method to Solve the Blind Area of Phase Current Reconstruction of Three-Phase Permanent Magnet Synchronous Motor		
15:05-15:19	2391962	Xinyang Wu	Loss prediction of vehicle permanent magnet synchronous motor based on deep learning		
15:19-15:33	2400192	Hongling Chen	Study on temperature rise characteristics of permanent magnet synchronous motor of electric vehicle under high altitude environment		
15:33-15:47	11510928	Xintong Zhang	Electromagnetic analytical model of PMSM fed by SVPWM inverter based on equivalent magnetic network		
15:47-16:00	11820915	Chaoyu Zhang	An Improved ADRC Speed Controller Based on Active Resistance in Speed Control System of PMSM		

		Day 3	3 June 27	
Room: A4-M	5B			
Lecture Sess	ion: Energy r	nanagement	:	
Session Chai	r: Jianwei Li			
Invited Speech				
Time	Paper ID	Author	Title	
			A System Prediction based Energy Management	
14:30-14:50	12021602	Jianwei Li	forPhotovoltaic/Fuel Cell/Battery hybrid Combined	
			Heat and Power System Inside Smart Home	
Oral Presentations				
Time	Paper ID	Author	Title	
14.50 15.04	1490122	Liu Rui	Energy management strategy of electric	
14.30-13.04			vehicle based on variable temperature model	
			Fuzzy logic-based energy management strategy for a	
15:05-15:19	1570789	Jian Yang	novel electromechanical-hydraulic coupling electric	
			vehicle	
		Zhiyuan Fang	Energy Management Strategy for Plug-in	
15:19-15:33	1990734		Hybrid Electric Vehicle Based on the	
			Reinforcement Learning Method	
		Buovan	Reinforcement Learning Based Energy Management	
15:33-15:47	10031513	KuOyan	Strategy to concurrently optimise fuel consumption &	
		пап	PEMFC lifetime for Fuel Cell Hybrid Electric Vehicles	
		Zowon	Research on Energy Recovery Efficiency of Different	
15:47-16:00	2000845	Zewen	Accumulators of the Electromechanical-hydraulic	
		ivieng	Coupling Electric Vehicle	

	Day 3 June 27			
Room: A4-M	5C			
Lecture Sess	ion: Battery	thermal mar	nagement	
Session Chai	r: Jun Xu			
Invited Speech				
Time	Paper ID	Author	Title	
14.20 14.50	2411201	lup Vu	A novel electro-thermal model with three	
14:30-14:50	3411281	Jun Xu	heat sources of a lithium-ion battery cell	
Oral Presentations				
Time	Paper ID	Author	Title	
			Overcharge investigation of large format	
14.50 15.04	2951617	Yangjie	lithium-ion pouch cells under compression in	
14.50-15.04		Zhou	electric vehicles: Thermal runaway features	
			and a forewarning strategy	
			Development and analysis of a new cylindrical	
15:05-15:19	14001441	Yasong Sun	lithium-ion battery thermal management	
			system	
15.10 15.22	1000160	Shiiio Li	Control Strategy of Extremely Fast Heating for	
15.19-15.55	1990109	Shijie Li	Lithium-ion battery under Low Temperatures	
		linghan	An experimental Study on Thermal Runaway	
15:33-15:47	2901883	Zhang	and "Cell-Module-Package" Propagation of	
		Zhang	Ternary Lithium-ion Batteries	
			Online Identification of Lithium-ion Battery	
15:47-16:00	3990365	Xinghao Du	Model Parameters with Initial Value $_{\perp}$	
			Uncertainty and Measurement Noise	

	Day 3 June 27			
Room: A4-O2	23			
Lecture Sess	ion: Battery	managemen	t and maintenance II	
Session Chai	r: Quanqing	Yu		
Invited Speech				
Time	Paper ID	Author	Title	
		lufong	Research on state-of-health estimation for	
14:30-14:50	NA	Vang	lithium-ion batteries based on vehicle	
		talig	operating data	
Oral Presentations				
Time	Paper ID	Author	Title	
			Analysis and Improvement Measures of	
14:50-15:04	12281222	Meilin Han	Driving Range Attenuation of Electric Vehicles	
			in Winter	
			Soft Clustering of Retired Lithium-ion Batteries	
15.05 15.10	2830233	Xin Lai	for Echelon Utilization Using Gaussian Mixture	
15.05-15.15			Model Based on Electrochemical Impedance	
			Spectroscopy	
			Online State of Charge Estimation Method	
15:19-15:33	9410733	Qiangwei Li	Based on Fractional-order Equivalent Circuit	
			Model	
15.22 15.47	14201624		A Novel Low-cost Dual-source Battery System	
15:33-15:47	14301634	wei zhou	with Partially Replaceable Battery Pack	
15.47 16.00	6000564	Vocon Vona	A Lithium-ion Battery Model Based on Long	
15:47-16:00	0000564	resen rang	Short Term Memory Neural Network	

		Day 3	June 27		
Room: A4-M	I5A				
Lecture Sess	ion: Vehicula	ar optimizatio	on system		
Session Chai	Session Chair: Xiaogang Wu				
Invited Speech					
Time	Paper ID	Author	Title		
16.10 16.20	2200226	Lina Via	Driving Style Recognition Model Based on		
10.10-10.50	2290320		NEV High-frequency Big Data		
		Oral Pre	sentations		
Time	Paper ID	Author	Title		
			AN AEB Control Strategy Based on the Double		
16:30-16:44	15982034	Fuyu Yang	Discrimination of Safety Distance and		
			Time-to-collision		
16.11 16.59	11720905	Fengning Yu	Research on 3D Object Detection Based on		
10.44-10.56	11730695		LiDAR and Camera Fusion		
16.50 17.10	1620122	Fengchen	Parameter matching method for		
10:58-17:12	1020123	Liu	battery-supercapacitor electric vehicle		
		Vinguu	Enhanced stability of MnO2 cathodes for		
17:12-17:26	14501835	Zhao	aqueous zinc ion batteries via atomic layer		
		Znao	deposition		
17.26 17.40	0060833	Zhonyu Curr	Big Data Platform and Data Analysis for Fuel		
17:26-17:40	9960822	Znenyu Suh	Cell Vehicle		

	Day 3 June 27			
Room: A4-M	5B			
Lecture Sess	ion: Power n	nanagement	system	
Session Chai	r: Chun Wan	g		
Invited Speech				
Time	Paper ID	Author	Title	
		Bing-ang	Estimating Energy and Power Densities for	
16:10-16:30	4490403	Mei	Pseudocapacitors from Cyclic Voltammetry	
		WICI	and Galvanostatic Cycling	
		sentations		
Time	Paper ID	Author	Title	
			A fast state-of-health estimation method for	
16:30-16:44	4301320	Jufeng Yang	lithium-ion batteries considering the incomplete	
			constant-voltage charging scenario	
		Quanding	Current sensor fault diagnosis method based	
16:44-16:58	10350858	Yu	on an improved equivalent circuit battery	
			model	
16.50 17.10	1590120	Chup Mang	State of Charge Estimation for Supercapacitor	
10.56-17.12	1560120		Pack based on Unscented Kalman Filter	
17.12 17.26	2670214	Vong Tion	Living object detection of electric vehicle wireless	
17.12-17.20	2070214	folig fiall	charging based on millimeter-wave radar	
			A Comparative Study on the Establishment of	
17.26 17.40	1641988	Oiong Li	the Variable Temperature Model for	
17:20-17:40			Ultracapacitor and the Method of Estimating	
			the State of Charge	

	Day 3 June 27			
Room: A4-O	23			
Lecture Sess	ion: Battery	management	t and maintenance III	
Session Chai	r: Quanqing	Yu		
Invited Speech				
Time	Paper ID	Author	Title	
10.10 10.20	NIA	Yongquan	Effects of vibration on reliability and	
16:10-16:30 NA		Sun	degradation of cylinderical Li-ion batteries	
Oral Presentations				
Time	Paper ID	Author	Title	
10.20 10.42	14211700	Zhang Chan	State of Charge Estimation for Lithium-ion	
16:30-16:42	14311706	Zheng Chen	Batteries Based on Cubature Kalman filter	
			A Temperature Simulation Model of Battery	
16:42-16:54	11600881	Shihuai Zhu	Thermal Management System Based on	
			Distributed Parameters	
			Numerical Study of Heat Transfer	
16:54-17:16	5270497	Haolun Xu	Enhancement in the Electric Vehicle Battery	
			via Vortex-induced Agitator	
			Battery Thermal Management For Electric	
17:16-17:28	5270489	Haolun Xu	Vehicles By A Thermal Connector With	
			Embedded Oscillating Heat Pipe	
17.20 17.40	280042	Miaomiao	An Energy Analysis of E-platagning	
17:28-17:40	380042	Hu	An Energy Analysis of E-platooning	
17.26 17.40	620070	Eduardo	One-pedal Driving Vversus Coasting: An	
17:20-17:40	030070	MELLO	Energy Efficiency Analysis	

POSTER PRESENTATIONS

	Day 2 June 26 13:00-14:20			
Dialogue S	Session: Batt	ery Modeli	ng and Management	
Session Cl	nair: Xiaoper	ng Tang		
Booth ID	Paper ID	Author	Title	
			The Analysis of Series Hybrid Energy Storage	
P111	1980178	Wang Jian	System for Regenerative Braking Based on Energy	
			Constraint Control Aimed at Deceleration	
		Huang	Energy-optimal Adaptive Cruise Control Strategy	
P112	P112 2070180	Aibao	for Electric Vehicles Based on Model Predictive	
		Albao	Control	
			Research on PEMFC Water Management Fault	
D112	15791001	Shuna	Diagnosis Method Based on Learning Vector	
F115	13781331	JIANG	Quantization Neural Network and Kernel Principal	
			Component Analysis	
D11/	222010/	Li Junfu	Power state estimation of lithium-ion batteries	
F 114	2320134		based on electrochemical model	
			Speed Control of Permanent Magnet Synchronous	
P115	11800925	Li Yinlu	Motor Based on Global Load Observer + New	
			Reaching Law	
D116	2510/26	Peng	Off line parameter identification of lithium-ion	
110	2310430	Jichang	battery based on relaxation characteristics	
D117	2220482	7hao Fei	Design and Analysis of the Linear Permanent	
F 117	3220482	211001101	Magnet Machine for Compressor	
D118	3631049	Chan lia	Thermal Runaway Modeling of NCM Lithium-ion	
F 110	3031043	CHEILINE	Batteries Under Different States Of Charge (SOC)	
P119	4471393	Gao Le	Research on Online Parameters Identification	

Ÿ

×

*

			Method of Fractional Order Model for Lithium-ion
			battery
D120	45.00447	Zheng	Two-dimensional traffic risk modeling method
P120	4500447	Xunjia	considering longitudinal and lateral factors
			The Currents Coordinative Control Strategy of
D101	F411490	Chen	Integrated Motor-Drive and Battery-Charging
PIZI	5411469	Jinchun	System Based on the Split-Field-Winding Doubly
			Salient Electromagnetic Machine in Driving Mode
D122	5510652	Wang	Optimization of liquid cooling structure for
F 122	5510052	Haitao	cylindrical lithium ion batteries
			Prediction for the Remaining Useful Life of
P123	9020696	Tan Zihao	Lithium-ion Battery Based on RVM-GM with
			Dynamic Size of Moving Window
		Zhang	Research on Real-time SOC Estimation of Lithium
P124	P124 9781436	Zhangija	Battery Based on Strong Tracking Adaptive
		Zhengjie	Extended Kalman Filter
		Lin	A trajectory tracking controller of multi-axis
P125	9971627	Liu Doliang	steering vehicle with coupling Horizontal and
		Deliang	longitudinal motion
D126	10061912	Zheng	Data analysis and visualization platform design for
F120	10001912	Linfeng	batteries using Flask-based Python web service
			Comparative Analysis on Economy Performance of
P127	10380861	Zhao Qian	a Pure Electric Passenger Car under WLTC and
			CLTC-P Conditions
		Zhang	Research on Shift Decision of 2-speed
P128	11710972	Lingshop	Transmission in Battery Electric Vehicle Based on
		Jingcheh	Knowledge

ICEIV

POSTER PRESENTATIONS

	Day 2 June 26 13:00-14:20			
Dialogue S	Session: Ene	rgy and Bat	tery System	
Session Chair: Yongzhi Zhang				
Booth ID	Paper ID	Author	Title	
D120	11770900	Jiang	Research on Point Cloud Registration Method of	
P129	11770899	Fengyang	Vehicle-mounted Lidar	
			A Comprehensive Safety Evaluation Method for	
P130	11921779	Li Da	Electric Vehicles based on Analytic Hierarchy	
			Process	
	P131 12161032	Chon	A SOC-based fast charging optimization strategy	
P131		Unen Wenxin	for lithium-ion batteries using dynamic	
			programming	
		Lin Jing	Improved Multi-stage Constant Current Charging	
P132	12180976		Method Based on Internal Resistance of Liquid	
			Metal Battery	
		Kang Chunjian	State of charge and state of health estimation of	
P133	12581046		series lead-acid battery pack based on EKF	
			algorithm	
D13/	12681846	Liu	Battery fault prognosis for electric vehicles based	
F134	12081840	Zhicheng	on ARIMA and CNN-LSTM in Real Time	
		0.1	Degradation Mechanism Diagnosis of Lithium-Ion	
P135	12881133	Woiwoi	Battery by Incremental Capacity Curves Peaks	
		Weiwei	Analysis	
D136	120217/1	Cheng	An Improved Structure for Multi-sector	
P130	13021741	Yuanyang	Bearingless Motor	
P137	14551631	Zhang	Optimization of DC-Link Capacitor in Motor Driver	

Ÿ

×

*

		Zhiguo	for Minimizing Its Volume
D120	14601944	Xing	Voltage balance control of flying capacitor in
F156 14001644	14001844	Ruipeng	multilevel converter
D120	14671000		A path tracking method for autonomous vehicles
P139	14671890	Luo Xiao	based on event-triggered variable-parameter MPC
51.40	1 1021010	Jiang	Hybrid excitation flux-switching generator with
P140	14931818	Zhiwei	deexcitation ability
D1 44	14041804	Wang	A Fast Open Circuit Voltage Characterization
P141	14941894	Sheng	Approach Based on Pulse Currents Injection
D1 4 2	15241007	Li Manalia	Design Consideration of Dual Three Phase PMSM
P142	P142 15241897	LI Menglin	Drive System in Electric Vehicles Application
D1 4 2	12471105	Zhang	Energy consumption prediction of electric vehicles
P143	P143 124/1185	Zhaolong	based on digital twin technology
D1 4 4	12100005		Dual-equivalent Circuit Fusion Model of Liquid
P144	12180995	Lin Jing	Metal Battery
			Electromagnetic Shielding Technique for
P145	5000945	Fu Yutong	No-insulation Superconducting Rotor Windings in
			Electrical Aircraft Propulsion
			Datton (conscitution based on grav
P147	2320201	Li Junfu	Battery capacity prediction based on grey
			prediction method and electrochemical model
D1 40	22205 44		Optimal Design of the Permanent Magnet Shape
P148	3220541	Zhao Fei	in an Axial-Flux Vernier Motor
		llesse	A Critical Review of Data-Driven Safety
P149	1270280	Hong	Management Technologies for Advanced Battery
		Jichao	Systems Towards Real-World Electric Vehicles
5450	46402040		Research on the self-synchronization 🔒
P150	16182040	Zhao Lei	characteristics of the planetary row automated

ICEIV

1

			mechanical transmission electrical driving system
D454		Li	Lithium-ion Batteries using electrochemical
P151	16272062	Xiaoquan	mechanism model based algorithms for EVS on
			Electric Vehicles
P152	2820230	Yu Haoran	Study on properties of high nickel ternary cathode
1152	2020230	Turnaoran	material coated with lanthanum oxide
P153	2990281	Zhang	Battery state-of-health estimate for lithium-ion
1155	2550201	Chaolong	battery using information entropy and PSO-LSTM
D15/	2610410	Zhang	Simple Recurrent Units Network for
134	5010419	Junming	State-of-charge Estimation of Lithium-ion Batteries
D155	4720522	Wang	Study on stability control of vehicle tire blowout
P100	4720555	Xingyu	based on run-flat tire
			Online State of Charge and State of Power Joint
P156	5210568	Dong Sidi	Estimation of Vanadium Redox Flow Battery Based
			on An Equivalent Circuit Model
D157	5330505	liene Kun	Thermal runaway analysis of nickel-rich lithium-ion
P157	5330505		batteries in different states of charge
D1E9	EADOGOE	You	Research on Dual Excitation Wireless Power
P130	5420065	Anhong	Transmission System Based on LCC-S Topology
D150		_	Manager Banking Class Data sting Fau Calf Dauking
P159	6010640	Pan	vacant Parking Slot Detection For Self-Parking
1135	6010640	Pan Xiaobai	System
	6010640	Pan Xiaobai	System Centralized PI Controller Matrix Design for the
P160	6010640 6100620	Pan Xiaobai Xia Ziyi	System Centralized PI Controller Matrix Design for the Multi-excitation-unit Inductive Power Transfer

POSTER PRESENTATIONS

Day 3 June 27 13:00-14:20						
Dialogue Session: Vehicular System						
Session Chair: Jichao Hong						
Booth ID	Paper ID	Author	Title			
P111	8981869	Dai Yingpeng	MDSNet: a lightweight network for real-time			
			vision task			
		Wang Cunbin	A pulse compound heating strategy for			
P112	9821790		lithium-ion battery based on electro-thermal			
			coupled model			
		Wu Xiangfeng	Research on the Acquisition and Amplification			
P113	9871813		of in-plane Signals of Proton Exchange			
			Membrane Fuel Cell			
D114	10190837	Ma Jian	Research on Anti-skid Control Strategy for			
P114			Four-Wheel Independent Drive Electric Vehicle			
D11F	2200207	Vulle MANC	High Fidelity Fractional Order Thermoelectric			
F115	5560507	TUJIE WANG	Model for Lithium-ion Battery Fast Charging			
	12011310	Yang Ruidong	The cooling circuit design and performance			
P116			optimization of battery cooling system in			
			electric vehicle thermal management			
D117	12071060	Li Jiabo	State of Charge Estimation for Lithium-ion			
F 117			Batteries based on Dual Kalman filter			
D119	12080959	Han Yongjie	Analysis and Design of a Modular Three-Phase			
F110			Boost-Buck EV Traction Inverter			
	12411891	Liu Jinjia	Parameter Tuning Method of ZVS Realization of			
P119			LCC-LCC Compensated Resonant Converter for			
			V2G Bidirectional Wireless Charger			

			Torque Distribution Control for
P120	12541177	Chen Qiang	Electric-Four-Wheel Drive Vehicles Considering
			Coordination of Stability and Economy
	12551183	Hu Han	A Review of Hybrid Control Based on High
P121			Frequency Injection Method for Sensorless
			Permanent Magnet Synchronous Motors
P122	12811119	Zhou Yue	Analysis of the End Effect for a Slotless Long-Stator
			Permanent Magnet Synchronous Linear Motor
5422	12271204	Gao Dekun	The Eco-Driving Strategy Considering Adjacent
P123	132/1294		Vehicles for Intelligent Connected Vehicles
D124	13321216	Huang Peng	The state of health estimation of lithium ion
P124			batteries in charging process
D125	13381516	Wang Yixian	Comparative Analysis of Parallel Hybrid Magnet
P125			Memory Machines with Different PM Arrangements
	13411225	Yang Xichen	Model-based Fault Diagnosis of External Short
P126			Circuit in a Wide Temperature Range for
			Lithium-ion Battery;Xichen Yang
0107	12441272	NIA	Research on the Fusion of Camera and Lidar for
P127	13441373	NA	3D Object Detection in Underground Coal Mine
0100	10501750	Luo Xinghua	Research on Torque Distribution Control of
P128	13521753		Distributed Drive Electric Vehicles
D120	13551397	Wang	Hierarchical driving force allocation strategy
F129		Jianlong	for4-WID electric vehicles
D120	13571342	Chang Bo	Robust control design of active front wheel
P130			steering on low adhesion road surfaces
5404	31 13791396	Zhang	The Precise estimation for state-of-charge of
P131		Chengzhong	NCM lithiumion batteries

* * *

POSTER PRESENTATIONS

Day 3 June 27 13:00-14:20						
Dialogue Session: Motor and Batteries						
Session Chair: Jichao Hong						
Booth ID	Paper ID	Author	Title			
P132	3380308	Caijie Zhou	State of health estimation for lithium-ion			
			battery based on the IC-LSTM framework			
P133	14221498	Chen Deliang	An Online Control Method for a Voltage Fed			
			Two Phase Dual Active Bridge Converter with			
			Minimum RMS Current			
			Research on Strategy of energy storage			
P134	15141852	Li Yunzhe	participating in auxiliary frequency regulation			
			of power system in spot market			
P135	15952028	Zou Naipeng	Recognition and diagnosis method for			
			accelerated aging of lithium-ion battery based			
			on logistic regression			
	9080695	Dai Xin	Incipient fault diagnosis of push-pull current			
P136			source inverter system for Wireless Power			
F 150			Transfer system based on generalized state			
			space averaging method			
	5020440	Guo Qingbo	System Efficiency Improvement Adopting			
P137			Permanent Magnet Synchronous Motor Direct			
			Drive System for Electric Vehicles			
	5450492	Yuanhang Pan	Two-layer scheduling strategy of orderly			
P138			charging and discharging based on V2G for			
			mutual benefit and win-win			
P139	5630528	Wang Zhi	Multi sensor fusion and ultra wideband			

			positioning technology (UWB) based on the
			complex scene of intelligent network call
			system
			An Approach for Pricing of Charging Service
P140	14791747	Yan Bao	Fees in an Electric Vehicle Public Charging
			Station
P141	14201495	XiaoyuLi	A multi-particle physics-based model of
			lithium-ion battery for fast-charging control
			application
			An Intelligent Optimization for the Auxiliary
P142	4061265	Wang Kai	Power Unit of the REEV Based on Performance
			Simulation
			Parameter identification method of an
P143	2321017	Li Junfu	electrochemical model for lithium-ion battery
			u a a lu
			раск
			раск Efficiency Optimization Control of
P144	5020443	Guo Qingbo	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for
P144	5020443	Guo Qingbo	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems
P144	5020443	Guo Qingbo	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal
P144 P145	5020443 3141667	Guo Qingbo Wei Jingwen	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs
P144 P145	5020443 3141667	Guo Qingbo Wei Jingwen	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent
P144 P145 P146	5020443 3141667 5770538	Guo Qingbo Wei Jingwen Yu Wei	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent Magnetic Linear Motor and the Optimization
P144 P145 P146	5020443 3141667 5770538	Guo Qingbo Wei Jingwen Yu Wei	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent Magnetic Linear Motor and the Optimization Design
P144 P145 P146	5020443 3141667 5770538	Guo Qingbo Wei Jingwen Yu Wei	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent Magnetic Linear Motor and the Optimization Design Research on Thrust Performance of
P144 P145 P146	5020443 3141667 5770538	Guo Qingbo Wei Jingwen Yu Wei	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent Magnetic Linear Motor and the Optimization Design Research on Thrust Performance of Double-Sided Permanent Magnet Linear
P144 P145 P146 P147	5020443 3141667 5770538 9270712	Guo Qingbo Wei Jingwen Yu Wei Wei Tao	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent Magnetic Linear Motor and the Optimization Design Research on Thrust Performance of Double-Sided Permanent Magnet Linear Synchronous Motor Considering
P144 P145 P146 P147	5020443 3141667 5770538 9270712	Guo Qingbo Wei Jingwen Yu Wei Wei Tao	раск Efficiency Optimization Control of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems Reinforcement Learning-based Optimal Balancing Control for Lithium-Ion Battery Packs Analysis of Ring-shaped Modular Permanent Magnetic Linear Motor and the Optimization Design Research on Thrust Performance of Double-Sided Permanent Magnet Linear Synchronous Motor Considering Manufacturing Imperfections

NOTE

